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Abstract

Discontinuities in the body force field typically appear at the interface of two fluid systems. Modeled with the volume-
of-fluid (VOF) and discretized with the finite volume method, the discontinuous body force fields are represented as
abruptly variable. In the present study, gravity and continuum surface force (CSF) are considered. Such strongly variable
body forces can produce unphysical spikes in the velocity field when collocated variable arrangement is used. The spikes
can be eliminated following a force field discretization rule which is deduced by imposing a constraint requiring a zero
velocity solution when the forces applied to the system are equilibrated with the gradient of the pressure field. It is shown
(as a byproduct of the present work) that a zero velocity solution can only be obtained if the force field is conservative on
the discrete level, which applies also for the studied case of a stationary bubble. Finally, the case of a rising bubble dem-
onstrates that the proposed rule should be obeyed generally although it is obtained for a quiescent fluid.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It appears that for engineering applications the benefits of collocated pressure and velocity field arrange-
ment outweigh the drawbacks, as it is used in the majority of today’s commercial CFD codes. Its main advan-
tage over the staggered arrangement lies in its easier implementation on non-orthogonal grids. On the other
hand, its main disadvantage is that it does not inherently ensure strong pressure–velocity coupling, thus allow-
ing for the appearance of a non-physical checkerboard pressure field (e.g., see [1], pp. 198). The most widely
used remedy on a collocated grid is the interpolation scheme of Rhie and Chow [2]. Several improvements to
this scheme have been suggested by Majumdar [3], Choi [4], Papageorgakopoulos et al. [5], Yu et al. [6] to
name a few. Gu [7] and later Choi et al. [8] propose additional corrections for the calculation of flows with
large body forces.
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The Rhie–Chow interpolation yields satisfactory results as long as the pressure field p is sufficiently smooth,
which is a rarely met condition in a multiphase system due to the discontinuities in body force fields. Two
kinds of discontinuous body force fields are most commonly encountered when dealing with multiple phases:

(1) In the gravity field g, a (q2 � q1)g jump in body force field fg = qg exists on the interface between the two
fluids where q1 and q2 are their densities.

(2) Taking into account also the surface energy, the force per unit interfacial area Fr ¼ rjn̂ is present where
r, j and n̂ are the surface tension coefficient, the interface curvature and the interface normal, respec-
tively. This surface force Fr is not convenient for an interface capturing multiphase flow simulation;
as shown by Brackbill et al. [9] it can be replaced with a body force field fr ¼ Frdðn̂ðxsÞ � ðx� xsÞÞ where
d(x) is Dirac’s delta function1 and xs is a point on the interface.

Whereas the step in fg causes the discontinuity of the $p-field, fr results in a pressure jump Dp = rj at the
interface between the two fluids.

For this study we refer to the two phase volume-of-fluid (VOF) model [10] which is based on the concept of
fractional volume of fluid denoted by C. Accordingly, the aforementioned body force fields are written as
fg = (q1 + C(q2 � q1))g and, using the continuum surface force (CSF) model by Brackbill et al. [9], fr = rj$C.
We consider an ideal VOF simulation without the numerical diffusion of C so that the interface thickness is within

one cell size and without the need to mollify C for the calculation of the CSF unless stated otherwise. Hence, the
discretization of fg or fr results in an abruptly variable discrete field. From a discrete point of view there is no
difference between the fields that are either continuous or discontinuous on the continuum scale. Naturally, a
discrete field with an abrupt variation can also originate from a corresponding continuous field; in this case the
steepness of the variation between the neighboring cells can simply be reduced by grid refinement. On the
other hand, when the abruptness originates from discontinuity it persists regardless of the grid density.

The use of the Rhie–Chow interpolation in a VOF-based simulation can result in the appearance of
unphysical spikes in the pressure and velocity fields near the interface, as shown later in the paper. Surpris-
ingly, to the authors’ knowledge, this issue has not been addressed properly even though the VOF model
implementation on collocated grids is used in many applications for both academic and industrial purposes.
This is perhaps because the spikes are either attributed to the inaccurate calculation of j or diminished by the
interface smearing resulting from the numerical diffusion of C.

A logical cure for the unphysical spikes would be switching off the Rhie–Chow interpolation on the faces of
the cells containing the interface. However, this leads to pressure–velocity decoupling and consequently an
unphysical pressure field. Instead we look for the remedy in more suitable discretization of the body force field
which causes the discontinuities in the pressure field.

To find a suitable finite volume discretization of body force fields which would suppress the aforementioned
spikes, we consider an initially quiescent fluid subject to equilibrated body force field. We impose that the dis-
cretization should comply with the exact balance between the body force and the pressure gradient so that
$p = f holds both inside the cells and on the cell faces. Then also the velocity field u discrete solution must
equal zero in all cells and their faces. This rather elementary demand gives a simple, physically comprehensible
rule for the discretization of the body force field.

The paper is organized as follows: the Rhie–Chow interpolation scheme and its enhancements are briefly
summarized in the next section. Section 3 contains a one-dimensional study of discontinuous force fields act-
ing on a stagnant fluid. The study results in the force field discretization rule. The two-dimensional situation is
considered in Section 4; it is also shown that a u = 0 solution to round-off error can only be obtained if the
body force field is conservative on a discrete level. This is tested on the problem of the parasitic currents appear-
ing at the interface of a stationary bubble [11] – a problem which is more directly connected with the discret-
ization of the CSF. In Section 5 the proposed rule is compared to standard FV force discretization for the case
of a rising bubble. Conclusions are given in Section 6.
1 Strictly mathematically, Dirac’s d(x) is not a function but a distribution and the term (dis)continuous does not apply. Nevertheless, fs is
not a continuous field.
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2. The Rhie–Chow interpolation and its corrections

This section contains a brief explanation of the Rhie–Chow interpolation; even though it can be found in
several CFD textbooks it is useful for easier reference in the following sections and also to introduce some
notation used in this paper. We start by writing down the x-component of the momentum equation for an
incompressible fluid with constant viscosity g
q
ou
ot
þ ðu � rÞu

� �
¼ � op

ox
þ gr2uþ f x; ð1Þ
where t, q, p, u and fx are time, fluid density, pressure, x-components of velocity and of body force, respec-
tively. Standard finite volume (FV) discretization (e.g., see [1]) of (1) on a fixed grid results in
oðquÞ
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P V P ; ð2Þ
where VP denotes the size of the FV under consideration. The subscripts P and f denote the average values in
FV and on FV face, respectively, and the summation comprises all FV faces. In (2), Ff = qfuf Æ Sf presents mass
flux through fth face with its surface vector Sf ¼ Sf n̂f where Sf is the surface and n̂ the normal vector pointing
out of the FV. For the incompressible fluid
X

f

F f ¼ 0; ð3Þ
follows from the mass conservation expressed with $ Æ u = 0.
Because we are concerned with discretization in space, the choice of the time discretization is not essential

for the matter at hand. At any rate, we use fully implicit time discretization because of its relative robustness
and easy implementation. Pressure and velocity field are coupled via the SIMPLE algorithm [12] which essen-
tially requires solving (2) and (3) repeatedly in succession inside the timestep Dt.

For simplicity, we consider a two-dimensional Cartesian grid; if the FV face values are approximated from
those of the neighboring FVs sharing the face then (2) can be written as
aP uP ¼ aEuE þ aW uW þ aN uN þ aSuS þ tP u0
P þ f x

P V P �
op
ox

����
P

V P ; ð4Þ
where the subscripts denoting the values the neighboring FVs correspond to standard compass notation [1]
(refer also to Fig. 5) and superscript 0 marks the value from previous timestep. If the linear interpolation
(CDS) is used to obtain the values on FV faces denoted by lower-case letters e, w, n and s then the coefficients
in (4) equal
aE ¼
geSe

Dxe
þ IeF e; aW ¼

gwSw

Dxw
þ IwF w; aN ¼

gnSn

Dyn

þ InF n;

aS ¼
gsSs

Dys

þ I sF s; tP ¼
qP V P

Dt
; aP ¼ aE þ aW þ aN þ aS þ tP ;

ð5Þ
where e.g. Dxe = xE � xP and Ie = (xe � xP)/Dxe denote the distance between points E and P and the linear
interpolation coefficient on the corresponding e-face, respectively. The derivative (op/ox)P in (4) is discretized
as (peSe � pwSw)/VP, i.e. employing Gauss’s theorem, where pe and pw are obtained by linear interpolation.
Taking into account also the underrelaxation with the solution from the previous outer iteration, denoted
by the superscript *, (4) can be written as
uP ¼
P

nbanbunb

aa
P

þ tP

aa
P

u0
P þ

V P

aa
P

fP �
V P

aa
P

peSe � pwSw

V P
þ ð1� auÞu�P ; ð6Þ
where the summation
P

nb comprises neighboring points (nb 2 {E,W,N,S}), au is the underrelaxation fac-
tor and aa

P � aP=au. As we use the underrelaxation generally, the superscript a is dropped hereafter for
brevity.
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For the calculation of mass fluxes on FV faces which are required in (5) and also in the mass conservation
constraint (3) leading to the pressure field equation, the FV face velocities are necessary. Since they are not
directly available on collocated grids they need to be interpolated, e.g. ue = IeuE + (1 � Ie)uP so that using
(6) for uP and the corresponding equation for uE results in
ue ¼ eue þ Ie
tP
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� �
E

u0
E þ ð1� IeÞ

tP

aP
u0

P þ Ie
V P
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Analogous expressions can be obtained for uw, vn and vs. Using them in (3) which on the two dimensional
Cartesian grid reads
�ueSe þ uwSw � vnSw þ vsSs ¼ 0 ð9Þ
leads to pressure–velocity decoupling. This is most evident on a uniform grid (Ie = Iw = In = Is = 0.5) where
values pE, pW, pN and pS cancel out and are therefore irrelevant for the satisfaction of (9).

To resolve the decoupling problem Rhie and Chow [2] suggest correcting (7) as
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where (op/ox)e = (pE � pP)/Dxe and the coefficient (VP/aP)e equals
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The correction (10) is very similar to replacing the interpolated pressure gradient in (7) with a directly calcu-
lated one
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In fact, (12) and (10) are the same for a fluid with constant properties on a uniform grid. Further enhancement
of (7) is proposed by Majumdar [3]
ue  ue þ ð1� auÞ u�e � Ieu�E � ð1� IeÞu�P
� �

; ð13Þ
so that the converged solution does not depend on au. In the same manner, Choi [4] recommends
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which results in a solution which is nearly timestep-independent, that is, Dt still affects aP. More importantly,
Yu et al. [13] demonstrated that using the Rhie–Chow correction without (13) and (14) can result in a check-
erboard pressure field for small values of au and/or Dt. In another work, Yu et al. [6] suggest a truly Dt-inde-
pendent solution; its description, however, is beyond the scope of this paper as in practice Choi’s correction
performs equally well.

When the fluid is subject to large body forces Gu [7] proposes
ue  ue þ
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� �
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V P
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The corrections (12)–(15) are easily implemented by replacing (7) with
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ue ¼ eue þ
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e
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therefore reducing the task to proper identification of face value terms.

3. One-dimensional quiescent fluid subject to body forces

In this section we examine how the velocity interpolation on the FV faces affects the calculated pressure and
velocity field in the presence of an abruptly variable body force. To make the analysis clear, a one-dimensional
(1D) system (x 2 [xL,xR]) containing two phases is considered. The distribution of phases is defined within the
VOF model so that the color function C
C ¼
1; x1 < x < x2;

0; otherwise;

�
ð17Þ
represents a 1D ‘‘bubble’’ or ‘‘drop’’. We consider two kinds of body force: (a) f x
g ¼ g½Cq1 þ ð1� CÞq2� mim-

icking body force in the gravity field and (b) f x
r ¼ rjoC=ox resembling the CSF; as curvature is not defined in

1D j is set manually. The velocity field of an incompressible fluid in a 1D system is uniform and determined on
the boundary; we set u = 0 at the boundaries and accordingly seek for uniform zero velocity field solution.

Although steady state is considered in this section the calculations are transient, i.e., the timestep size Dt is
set to a finite value. The convergence criteria of the timestep is defined with the condition rn

i =rn
0 < eDt where rn

i

and rn
0 present norms of the residuum after the ith (outer) iteration and before the first iteration inside the nth

timestep, respectively. The steady state, on the other hand, is reached when rn
0=r1

0 < est. For the calculations in
this section eDt = 1.0 · 10�4 and est = 1.0 · 10�10; Dt is set to 1.0 s unless stated otherwise.

To quantify intelligibly the magnitude of error in the solution we consider the material properties of a com-
monly encountered air–water system given in Table 1. The system limits xL and xR are set to 0.0 and 0.1 m,
respectively. The ‘‘bubble’’ is located between x1 = 0.030 m and x2 = 0.066 m; the choice is such that x1 is
positioned exactly on the face of an FV on uniform grids with 20, 40 and 80 cells, whereas x2 lies inside an
FV thus considering both situations simultaneously.

The converged stationary pressure and velocity field (at the mid-FV points) in the described system subject
to body force f x

P ¼ g½CPq1 þ ð1� CP Þq2� due to gravity g = 1.0 · 101 m s�2 are drawn in Fig. 1. Figs. 1a and b
display the results when the Rhie–Chow interpolation (10) is used; unphysical spikes in the velocity field are
obtained. Their magnitude decreases with grid refinement but even on the uniform grid with 80 FVs they are
still substantial. The result of adding Gu’s correction (15) can be seen in Figs. 1c and d; the magnitude of the
spikes is even larger.

The presented numerical experiment also reveals the importance of Choi’s correction (14). That is, the
obtained solution strongly depends on Dt if (14) is not implemented: Fig. 2a shows that the magnitude of
the velocity field spikes is reduced by using smaller Dt, however, at the same time the pressure field smoothing
effect is also reduced, resulting in an oscillating pressure field (Fig. 2b). This behavior agrees well with the anal-
ysis of Yu et al. [13]. As pointed out in the previous section, Choi’s correction (14) weakens the Dt-dependence
of the obtained solution (Fig. 2c). Also, the pressure field smoothing effect appears independent of Dt
(Fig. 2d). Therefore, we use (14) in the calculations along with Majumdar’s correction.

In order to obtain a uniform u = 0 solution the body force f x should be perfectly balanced with op/ox on
both the FV center points and faces. On FV faces thus ðop=oxÞe ¼ f x

e and ðop=oxÞw ¼ f x
w must hold, which also

suits the pressure equation for quiescent fluid
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1
ial properties of air (subscript 1) and water (subscript 2)

.29 · 100 kg m�3 q2 = 1.0 · 103 kg m�3

.8 · 10�5 N s m�2 g2 = 1.0 · 10�3 N s m�2

· 10�2 N m�1
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Fig. 1. Velocity and pressure field subject to gravity on uniform grids with 20, 40 and 80 FVs using the Rhie–Chow interpolation (a, b) and
adding Gu’s correction (c, d).
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The above equation follows from (9) which on 1D grid reads �ue + uw = 0 and thus depends on the cell face
velocity interpolation; (18) is obtained when both the Rhie–Chow interpolation and Gu’s correction are used
as in (16). If second order CDS derivative approximation is used then pE, pW and pP are related as follows
pE ¼ pP þ feDxe and pW ¼ pP � fwDxw: ð19Þ

Considering the grid points as well, ðop=oxÞP ¼ f x

P should hold. If Gauss’s theorem is applied (where
Se = Sw = 1, see previous section) to calculate the derivative inside FV then
f x
P ¼

pe � pw

V P
¼ IepE þ ð1� IeÞpP � IwpW � ð1� IwÞpP

V P
: ð20Þ
Using (19) to express pE and pW in (20) results in the relation
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530 J. Mencinger, I. Žun / Journal of Computational Physics 221 (2007) 524–538
f x
P ¼

IefeDxe þ IwfwDxw

V P
; ð21Þ
where, as expected, pP cancels out. The above equation presents the discretization rule to obtain zero velocity
at grid points if the Rhie–Chow interpolation is used with Gu’s body force correction. The rule depends on the
way op/ox is discretized. Nevertheless, it implies that body force should first be discretized on the FV faces and
then calculated for FV. Following this rule a machine accurate uniform u = 0 solution is obtained.

Let us now consider CSF with f x
P ¼ rjðCe � CwÞ=V P where we set j = 2/(x2 � x1). The Rhie–Chow inter-

polation without Gu’s correction again results in the spikes visible in Fig. 3. Adding Gu’s correction eliminates
the spikes completely because f x

P then conforms with (21) as the discretizations of op/ox and oC/ox are the
same. If the latter is discretized, for example, as (CE � CW)/(xE � xW) then unphysical results are again
obtained on a non-uniform grid as demonstrated in Fig. 4.
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The necessity to use the same discretization for op/ox and oC/ox to eliminate spurious currents resulting
from CSF was also noted by Renardy and Renardy [14] who however used staggered grids. On collocated
grids this applies as well when both the Rhie–Chow interpolation and Gu’s correction are used; in this case
the pressure Eq. (18) is the same as on staggered grids except for the interpolated coefficients. However, it
should be noted that the spurious currents considered by Renardy and Renardy which are discussed also in
the next section appear on both staggered and collocated grids and are thus not related to the unphysical
velocity spikes on the collocated grids.
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4. Two-dimensional quiescent fluid subject to body forces

An equivalent discretization rule such as (21) can also be acquired for two- and three-dimensional prob-
lems. For simplicity we limit the discussion only to two-dimensional structured but generally non-orthogonal
grids. On such a grid, (3) yields
Fig. 5.
(b) vec
Ge � Gw þ Gn � Gs ¼ 0; ð22Þ

where Ge = uedye � vedxe, Gw = uwdyw � vwdxw, Gn = vndxn � undyn and Gs = vsdxs � usdys. Here, dxf and dyf

are the components of the vector df pointing between corresponding FV-corner points as shown in Fig. 5a.
Using equivalent interface interpolation as in (16) to calculate the velocity on a FV face then, for example,
Ge can be written as
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Expressing the derivatives in terms of computational coordinates n and g, (23) can be written as
Ge ¼ eGe þ
tP
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e : ð25Þ
Here, Je = Dxedye � dxeDye, ae ¼ dx2
e þ dy2

e ¼ jdej2 and be = dxeDxe + dyeDye = de Æ De, where D denotes the
vectors between FV grid points as Fig. 5b shows. Inserting (25) and analogous relations for w, n and s faces
in (22) gives the pressure field equation; for stagnant fluid subject to body forces it reads
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ð26Þ
Notation used on a FV grid: (a) d – FV grid points, � – FV-face points, vectors d = [dx,dy]t pointing between FV-corner points
tors D = [Dx,Dy]t pointing between grid points.
,
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To obtain G = 0 solution on all FV faces then $p = f should hold; replacing op/ox and op/oy with derivatives
with respect to n and g on the e-face results in
op
on

����
e

dye

J e
� op

og

����
e

Dye

J e
¼ f x

e ; �op
on

����
e

dxe

J e
þ op

og

����
e

Dxe

J e
¼ f y

e : ð27Þ
The solution of the above system (whose determinant equals Je) reads
op
on

����
e

¼ f x
e Dxe þ f y

e Dye ) pE � pP ¼ fe � De;

op
og

����
e

¼ f x
e dxe þ f y

e dye ) pne � pse ¼ fe � de;

ð28Þ
which has obvious physical meaning. Analogous relations can be obtained for other FV faces. As in the pre-
vious section we also seek for a u = 0 solution on grid points which requires ðop=oxÞP ¼ f x

P and ðop=oyÞP ¼ f y
P .

Again using Gauss’s theorem to calculate derivatives in FV and linear interpolation to obtain FV face values
the following is obtained:
f x
P V P ¼ fIepE þ ð1� IeÞpPgdye � fIwpW þ ð1� IwÞpPgdyw

� fInpN þ ð1� InÞpPgdyn þ fIspS þ ð1� IsÞpPgdys;

f y
P V P ¼ fInpN þ ð1� InÞpPgdxn � fIspS þ ð1� IsÞpPgdxs

� fIepE þ ð1� IeÞpPgdxe þ fIwpW þ ð1� IwÞpPgdxw:

ð29Þ
Inserting pE = pP + fe Æ De from (28) and analogous relations for other FV faces in (29) results in
f x
P V P ¼ Iedyefe � De þ Iwdywfw � Dw � Indynfn � Dn � Isdysfs � Ds;

f y
P V P ¼ Indxnfn � Dn þ Isdxsfs � Ds � Iedxefe � De � Iwdxwfw � Dw;

ð30Þ
where pP, as in (21), cancels out. The above presents the discretization rule to obtain a uniform u = 0 field
inside FV when FV face velocities are zero. The rule again depends on the discretization of $p. According
to (30) f x

P is expressed with both components f x and f y on FV faces instead of only f x if the grid is non-orthog-
onal. Equivalently, f y

P also depends on both FV face values of f x and f y. This discretization error originates
from the use of Gauss’s theorem to discretize $p.

In the above treatise we assumed that the solution of (26) satisfies $p = f on all FV faces. If so, then the
solution could simply be constructed using (28) and analogous relations while starting from an arbitrary grid
point. Such construction of the solution must be independent of the path used. Consider, for example, four
grid points P, E, N and NE (as in Fig. 5b). The difference pNE � pP can be expressed as (pNE � pE) + (pE � pP)
or as (pNE � pN) + (pN � pP); using (28) and analogous relations then
fene � Dene þ fe � De ¼ fnne � Dnne þ fn � Dn; ð31Þ
must hold to allow the described construction of the solution of (26). Assuming that only one solution (up
to a constant) exists we conclude that it can satisfy the discretized rp ¼ f equation on all FV faces only
when f is conservative on the discrete level in the sense of (31). This requirement is valid also for the stag-
gered grids.

As an illustration we consider three cases of body force allowing for quiescent fluid and test them against
(31):

(1) uniform body force f ¼ ½f x
c ; f

y
c �

t where f x
c and f y

c are constants; it is easy to see that in this case f always
satisfies (31) because Dene + De = Dnne + Dn.

(2) body force in gravity field f = q[0, � g]t; in this case the condition (31) reads
qeneDxene þ qeDxe ¼ qnneDxnne þ qnDxn: ð32Þ

In a stratified fluid the above is met depending on the calculation of q on FV faces. For a two fluid sys-
tem, modeled with VOF so that q = q1 + C(q2 � q1), q can be replaced with C. The condition (33)
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should be satisfied when the interface is horizontal, however it depends on the calculation of C on FV
faces. If a Cartesian grid (n = x and g = y) is used then (32) further simplifies to Cene = Cn.

(3) Continuum surface force f ¼ rj ~rC; in this case it is worth noting that when $e is discretized, for exam-
ple, as in (27) then ð ~rCÞe � De ¼ CE � CP . Using this and analogous relations in (31) gives the zero veloc-
ity condition
rjeneðCNE � CEÞ þ rjeðCE � CP Þ ¼ rjnneðCNE � CN Þ þ rjnðCN � CP Þ: ð33Þ
Considering a stationary bubble we see that (33) is satisfied if j, calculated on all relevant FV faces, is
constant.

The satisfaction of (33) when CSF is considered insures a uniform u = 0 solution; thus it must also apply for
the well-known problem of the parasitic currents at the interface of a stationary bubble [11]. This problem has
been investigated extensively, resulting mostly in remedies which reduce parasitic currents but do not eliminate
them [15]. Jamet et al. [15] concluded that, at least for the second gradient method that they refer to, the essen-
tial requirement for the elimination of parasitic currents is the energy conservation achieved through careful
discretization of the momentum equation. The requirement (33) applicable to CSF is much more elementary.
Again, it is consistent with the argument of Renardy and Renardy [14] that the parasitic currents can be attrib-
uted solely to the finite precision of the calculation of j as long as the discretizations of $p and $C are the
same. Their key idea was that ‘‘both $p and $C are singular at the interface, but they cancel each other
out’’. Choosing the same discretization for gradients is also natural and can thus be considered as the standard
choice.

The remainder of the section is devoted to the numerical experiment dealing with the aforementioned
parasitic currents problem. Renardy and Renardy [14] performed such an experiment to show that their
parabolic interface reconstruction algorithm (PROST) for the calculation of j is substantially more accu-
rate than methods based on the relation j ¼ r � n̂ which thus require numerical derivation of C. Our
intention, on the other hand, is to demonstrate that the parasitic currents can be eliminated only when
(33) is satisfied. This can be achieved through setting j = 1/R which is compared against two methods
to compute j: it is either obtained with PROST [14] or from j ¼ r � n̂. For the latter method we follow
the work of Williams et al. [16] so that n̂ ¼ n=jnj is calculated from nðxÞ ¼

R
XrK8ðx0 � xÞCðx0Þdx0 where

the kernel K8(r,�) is defined as
K8ðr; �Þ ¼
A½1� r � r=�2�4; jrj < �

0; jrjP �

(
; A ¼ 1R

X½1� r � r=�2�4 dr
: ð34Þ
The smoothing level parameter � influences the accuracy of the method which we hereafter call WKP using the
authors’ initials.

The amplitude of the parasitic currents is proportional to r/g [17]; this can be well understood as they
are driven by CSF which is proportional to r and counterbalanced by the viscous forces proportional to
g. The time to reach the amplitude (which can also fluctuate in time) is proportional to fluid density q.
We again consider air and water: an air bubble is positioned in the middle of a water-filled square cavity.
The radius R of the bubble is set to 0.005 m and the side length l of the cavity to 0.02 m. Fig. 6 shows
the parasitic currents on a 40 · 40 uniform grid obtained with the two chosen methods to calculate j. As
measures of the magnitude of the parasitic currents we use the total kinetic energy W k ¼

P
PqP juP j2V P

and maximum velocity umax = maxP(juPj) in the domain. Fig. 7 shows Wk(t) and umax(t) on 40 · 40,
80 · 80 and 160 · 160 uniform grids; clearly steady states are reached. Timestep size Dt = 1.0 · 10�4 s
and eDt = 2.5 · 10�5 were used for all the calculations of this case; � = 0.005 m was set for WKP. As
expected and confirmed in Table 2, j is calculated more accurately with PROST than with WKP. Con-
sequently, weaker parasitic currents are induced with the former than with latter method on the same
grid. Interestingly, the magnitude of the parasitic currents in the simulations with PROST on 40 · 40 grid
and with WKP on 80 · 80 grid is of comparable size even though the error jDjj differs by an order of
magnitude. This could perhaps be explained by the fact that CSF acts on a smaller area when the grid is
finer.



a b

Fig. 6. Parasitic currents computed on 40 · 40 uniform grid for the considered case of a stationary air bubble in water: using WKP (a) and
PROST (b) to obtain j.

J. Mencinger, I. Žun / Journal of Computational Physics 221 (2007) 524–538 535
Also, Fig. 7 shows that the initial error, induced by the SIMPLE algorithm as the calculation is initiated
with uniform pressure p = 0 field, reduces to round-off for exact values of j. The presented numerical
experiment confirms that parasitic currents are eliminated completely only when (33) is satisfied. Thus in prac-
tical calculations, where j cannot be set manually, they are inevitable.
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Fig. 7. Wk(t) and umax(t) on 40 · 40, 80 · 80 and 160 · 160 uniform grids for the considered case of a stationary bubble using WKP,
PROST and setting j = 1/R. The vertical scales under Wkin = 1.0 · 10�15 J/m and umax = 1.0 · 10�6 m/s on the left (a) and right (b)
graphs, respectively, are logarithmic.



Table 2
Minimal and maximal error Djmin ¼ jmin � 1

R and Djmin ¼ jmin � 1
R using selected methods to obtain j and corresponding Wk and umax at

t = 8.0 s for the considered case of a stationary bubble

Method Grid Djmin (m�1) Djmax (m�1) Wk (J/m) umax (m/s)

WKP 40 · 40 �2.86 · 101 3.56 · 101 2.83 · 10�7 1.72 · 10�2

WKP 80 · 80 �1.53 · 101 1.82 · 101 1.92 · 10�8 5.88 · 10�3

WKP 160 · 160 �8.43 · 100 8.63 · 100 1.03 · 10�9 1.54 · 10�3

PROST 40 · 40 6.07 · 10�1 1.44 · 100 1.82 · 10�7 4.74 · 10�3

PROST 80 · 80 1.88 · 10�1 3.75 · 10�1 1.21 · 10�8 9.45 · 10�4

PROST 160 · 160 4.67 · 10�2 8.90 · 10�2 5.70 · 10�10 1.90 · 10�4

j = 1/R 40 · 40 0.0 0.0 2.95 · 10�34 4.65 · 10�15

j = 1/R 80 · 80 0.0 0.0 1.26 · 10�34 2.17 · 10�15

j = 1/R 160 · 160 0.0 0.0 4.75 · 10�35 1.15 · 10�15

a b

Fig. 8. Contours C = 0.5 at t = 0.0 (0.05) 0.25 s: (a) using f x
P ¼ �gqP and (b) using (30).

536 J. Mencinger, I. Žun / Journal of Computational Physics 221 (2007) 524–538
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5. Rising bubble

The rule (30) for the discretization of body force was attained considering a stagnant fluid. To see its effect
in more practical calculations, i.e. for moving fluids, we consider a two-dimensional case of a rising bubble in a
rectangular cavity. Again, the material properties of air and water, given in Table 1, are used. The cavity width
w and height h are set to 0.02 m and 0.04 m, respectively. No-slip boundary conditions are enforced at the
walls. Initially, the round bubble with radius R = 0.0025 m is located at (x0,y0) = (w/2,h/4) and the velocity
field is uniformly set to zero (u = 0).

Besides solving the Navier–Stokes equation as described earlier in the text the transport equation dC/dt = 0
must also be solved. For this purpose the CICSAM scheme of Ubbink [18] is implemented. Although the dif-
fusion of C is not completely eliminated, this low-diffusive scheme works satisfactorily for the case presented.
It turns out, however, that CICSAM is incompatible with PROST which becomes inaccurate with even weak
diffusion of C – the investigation of this issue is beyond the scope of the present work. Thus, j is calculated
with WKP method [16] described in the previous section; here e = 5.0 · 10�4 m. In the simulations,
Dt = 2.5 · 10�5 s and eDt = 2.5 · 10�5.

Two simulations run with the same parameters are compared. They differ only in the discretization of body
force field: standard discretization f x

P ¼ �gqP is implemented in the first simulation whereas (30) is obeyed in
the second one. For CSF, as explained in Section 4, standard discretization already complies with (30) and is
thus the same in both simulations. Fig. 8 shows C = 0.5 contours indicating the position and shape of the bub-
ble at time instants t = 0.0 (0.05) 0.25 s calculated on 40 · 80 uniform grid. Both calculations in Figs. 8a and b
apparently produce realistic results. A closer look at Fig. 9a reveals that unphysical spikes in the velocity field
appear near the interface in the first simulation. Fig. 9b on the other hand displays the velocity field when (30)
is implemented: the aforementioned spikes disappear or at least they are greatly diminished. Evidently, obey-
ing a rule such as (30) is important.

It is interesting that despite the spikes in the velocity field, the first simulation produces reasonable results at
least when looking at the contours of the bubble. This can be explained by the correcting role of the mass
conservation Eq. (3). That is, the velocities on FV faces that are used for the calculation of fluxes are calcu-
lated by interpolating FV velocities and then corrected with the pressure gradient as given by (12). Neverthe-
less, the FV velocities still determine the FV face velocities as can be understood from (16). In the presented
case therefore FV velocities near the interface regulate its movement. It is reasonable to expect that the unde-
sired velocity spikes could in the worst case result in artificial interface instabilities or breakups.
a b

Fig. 9. Velocity field and C = 0.5 contour at t = 0.05 s: (a) using f x
P ¼ �gqP and (b) using (30).
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6. Conclusions

As indicated in the paper, the FV discretization on collocated grids requires some caution when dealing
with abruptly variable body force field f. That is, if the Rhie–Chow interpolation is used with its most impor-
tant enhancements, then complying with rules such as (30) is advised in order to avoid the appearance of
unphysical spikes in the velocity field near the abrupt change in f. The exact form of the rule depends on
the discretization of $p, nevertheless the idea is to first compute f on FV faces and then use them to obtain
fP. Such discretization does not exactly follow the spirit of the FV method where fP presents the average value
of f inside an FV, whereas in our case it is a linear combination of the average forces on FV boundaries. The
difference between the two is smaller when f is smoother, so the proposed manner of discretization can in prac-
tice be applied generally.

The described discretization rule is obtained by imposing an additional constraint which requires a uniform
u = 0 solution where such a solution follows from physics. Such a solution, i.e., without any parasitic currents
can only be obtained when the body force is conservative on the discrete level. In practical calculations this is
rarely the case. Moreover, a quiescent fluid is seldom considered for practical calculations. However, it is dem-
onstrated in Section 5 that although the proposed rule for the discretization of the force field is obtained for a
quiescent fluid it can also be used for the simulations of moving fluid.
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